Jeramie
X-y+z=5....(1)
2y+3z=14...(2)
-3y+2z=5...(3)
multiplizieren mit 3 in Gl. (2) und multiplizieren mit 2 in Gl. (3) addiere beide Gleichungen
13z = 52
z = 4
setze den Wert von z in Gl. (2)
2y+3*4=14
2y+12=14
2y=2
y = 1
setze den Wert von y und z in Gl. (1)
x-1+4=5
x+3=5
x=2
Der Punkt ist also: (2,1,4)
Timothy
Die letzten beiden Gleichungen eignen sich zur Eliminierung.
3(2y+3z) + 2(-3y+2z) = 3(14) + 2(5)
9z + 4z = 42+10
13z = 52
z = 4
Einsetzen in die zweite Gleichung
2y + 3(4) = 14
y = (14 - 12)/2 = 1
Einsetzen in die erste Gleichung
x - 1 + 4 = 5
x = 5 - 3 = 2
Die Lösung ist
(x, y, z) = (2, 1, 4) .