Wie finde ich die 2 Zahlenpaare mit der gegebenen Zahl 36 als kleinstes gemeinsames Vielfaches?

1 Antworten


  • 36 = (2^2)*(3^2)
    Das kleinste gemeinsame Vielfache ist das Produkt der eindeutigen Faktoren mit der höchsten Potenz, mit der sie in einem der Zahlenpaare vorkommen. Mindestens eine der Zahlen muss 2^2 = 4 als Faktor haben und mindestens eine von ihnen muss 3^2 = 9 als Faktor haben. Mögliche Optionen für Paare, deren kleinstes gemeinsames Vielfaches
    36 ist, sind {1, 36}, {2, 36}, {3, 36}, {4, 36}, {6, 36}, {9, 36},
    { 12, 36}, {18, 36}, {4, 18}, {12, 18}, {9, 12}, {4, 9}

Schreibe deine Antwort

Ihre Antwort erscheint nach der Moderation appear