Создайте систему линейных уравнений из своей собственной жизни, это может быть расширением вашего SLP модуля 2 или чем-то совершенно новым. Имейте в виду, что система линейных уравнений будет состоять из двух уравнений, использующих одни и те же переменные и переменные?

1 Ответы


  • Линейную систему, взятую из жизни человека, можно выразить следующим образом:
    в автобусном туре принимают участие 22 человека. Когда они останавливаются на обед, некоторые едят гамбургеры, а другие выбирают хот-доги. Официант приносит на стол на восемь хот-догов больше, чем гамбургеров.

    Сколько было куплено каждого?

    X = количество хот-догов
    y = количество гамбургеров

    Таким образом, уравнения следующие:
    X + y = 22
    x = y + 8

    Чтобы определить y, действуем следующим образом:
    Y + 8 + y = 22
    2y + 8 = 22
    2y = 22 - 8
    y = (22-8) / 2
    y = 7

    Теперь легко определить x:
    X = y + 8
    x = 7 + 8
    x = 15

    Группа путешественников приобрела семь гамбургеров и 15 хот-догов.

    • Краткое объяснение линейных систем
    Линейная алгебра является фундаментальной в современной математике. Так называемые вычислительные алгоритмы для поиска решений важны в числовой линейной алгебре, в частности, в таких областях, как химия, физика, экономика, информатика и инженерия. Линейные системы, являющиеся частью линейной алгебры, помогают аппроксимировать нелинейные уравнения. Это особенно полезно в процессе создания компьютерных симуляций довольно сложных систем или математических моделей.

    • Базовый пример
    Простейшая форма линейной системы состоит из двух переменных, x и y, в двух уравнениях, например:

    X + y = 21 и
    x = y + 7.

    Эти уравнения можно объединить в одно, заменив x в первом уравнении на y + 7. Таким образом, новое уравнение выглядит так: Y + 7 + y = 21. Его можно сократить до: 2y + 7 = 21, тогда 2y = 21 - 7. Следовательно, y = 14/2 = 7. Мы знайте, что x = y + 7, поэтому x = 14.

    • Последовательно или непоследовательно?
    Линейную систему можно рассматривать как непротиворечивую, поскольку ее можно использовать для линеаризации любого набора из двух или более нелинейных уравнений.

Напишите свой ответ

Ваш ответ появится после модерации