Retta
Habiendo discutido los diversos diseños de muestreo probabilístico y no probabilístico, ahora debemos centrar la atención en el segundo aspecto del problema del diseño muestral que es el tamaño de la muestra. Suponga que seleccionamos 30 personas de una población de 300 mediante un procedimiento de muestreo aleatorio simple. ¿Seremos capaces de generalizar nuestros hallazgos a la población con confianza ya que hemos elegido un diseño de probabilidad que tiene la mayor posibilidad de generalización? ¿Cuál es el tamaño de la muestra que se requeriría para hacer generalizaciones razonablemente precisas con confianza? ¿Qué significan precisión y confianza? Estos temas serán considerados ahora.
Una muestra confiable y válida debería permitirnos generalizar los hallazgos de la muestra a la población bajo investigación. En otras palabras, las estadísticas de la muestra deben ser estimaciones fiables y reflejar los parámetros de la población lo más fielmente posible con un estrecho margen de error. Ninguna estadística de muestra será exactamente igual a los parámetros de población, sin importar cuán sofisticado sea el diseño de muestreo probabilístico. Recuerde que la verdadera razón de un diseño de probabilidad es aumentar la probabilidad de que las estadísticas de la muestra se acerquen lo más posible a los parámetros de la población. Aunque la estimación puntual realizada dentro de la cual se ubicará la media.